
Deep Learning for Semantic Composition

Xiaodan Zhu∗ & Edward Grefenstette†

∗National Research Council Canada
Queen’s University
zhu2048@gmail.com

†DeepMind
etg@google.com

July 30th, 2017

Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 1 / 119



Outline

1 Introduction
Semantic composition
Formal methods
Simple parametric models

2 Parameterizing Composition Functions
Recurrent composition models
Recursive composition models
Convolutional composition models
Unsupervised models

3 Selected Topics
Compositionality and non-compositionality
Subword composition methods

4 Summary

Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 2 / 119



Outline

1 Introduction
Semantic composition
Formal methods
Simple parametric models

2 Parameterizing Composition Functions
Recurrent composition models
Recursive composition models
Convolutional composition models
Unsupervised models

3 Selected Topics
Compositionality and non-compositionality
Subword composition methods

4 Summary

Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 3 / 119



Principle of Compositionality

Principle of compositionality: The meaning of a whole is a function of
the meaning of the parts.

While we focus on natural language, compositionality exists not just
in language.

Sound/music

Music notes are composed with some regularity but not randomly
arranged to form a song.

Vision

Natural scenes are composed of meaningful components.
Artificial visual art pieces often convey certain meaning with regularity
from their parts.
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Principle of Compositionality

Compositionality is regarded by many as a fundamental component of
intelligence in addition to language understanding (Miller et al., 1976;
Fodor et al., 1988; Bienenstock et al., 1996; Lake et al., 2016).

For example, Lake et al. (2016) emphasize several essential
ingredients for building machines that “learn and think like people”:

Compositionality
Intuitive physics/psychology
Learning-to-learn
Causality models

Note that many of these challenges present in natural language
understanding.

They are reflected in the sparseness in training a NLP model.

Note also that compositionality may be entangled with the other
“ingredients” listed above.
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Semantic Composition in Natural Language

good → very good → not very good → ...
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Semantic Composition in Natural Language

Figure: Results from (Zhu et al., 2014).
A dot in the figure corresponds to a negated
phrase (e.g., not very good) in Stanford
Sentiment Treebank (Socher et al., 2013).
The y-axis is its sentiment value and x-axis
the sentiment of its argument.

Even a one-layer composition, over
one dimension of meaning (e.g.,
semantic orientation (Osgood
et al., 1957)), could be a
complicated mapping.
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Semantic Composition in Natural Language

good → very good → not very good → ...

senator → former senator → ...

basketball player → short basketball player → ...

giant → small giant → ...

empty/full → half empty/full → almost half empty/full → ...1

1See more examples in (Partee, 1995).
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Semantic Composition in Natural Language

Semantic composition in natural language: the task of modelling the
meaning of a larger piece of text by composing the meaning of its
constituents.

modelling :

The compositionality in language is very challenging as discussed
above.
Compositionality can entangle with other challenges such as those
emphasized in (Lake et al., 2016).

a larger piece of text:

constituents:
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Introduction

Two key problems:

How to represent meaning?

How to learn such a representation?
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Representation

Let’s first very briefly revisit the representation we assume in this tutorial
... and leave the learning problem to the entire tutorial that follows.

Love
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Representation

love, admiration, satisfaction ...
anger, fear, hunger ...
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Representation

A viewpoint from The Emotion Machine (Minsky, 2006)

Each variable responds to different concepts and each concept is
represented by different variables.

This is exactly a distributed representation.
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Representation
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Modelling Composition Functions

How do we model the composition functions?
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Representation

Deep Learning for Semantic Composition

Deep learning: We focus on deep learning models in this tutorial.

“Wait a minute, deep learning again?”
“DL people, leave language along ...”

Asking some questions may be helpful:

Are deep learning models providing nice function or density
approximation, the problems that many specific NLP tasks essentially
seek to solve? X→Y

Are continuous vector representations of meaning effective for (as
least some) NLP tasks? Are DL models convenient for computing
such continuous representations?

Do DL models naturally bridge language with other modalities in
terms of both representation and learning? (this could be important.)
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Introduction

More questions:

What NLP problems (e.g., semantic problems here) can be better
handled with DL and what cannot?

Can NLP benefit from combining DL and other approaches (e.g.,
symbolic approaches)?

In general, has the effectiveness of DL models for semantics already
been well understood?
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Introduction

Deep Learning for Semantic Composition
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Formal Semantics

Montague Semantics (1970–1973):

Treat natural language like a formal language via

an interpretation function [[. . .]], and
a mapping from CFG rules to function application order.

Interpretation of a sentence reduces to logical form via β-reduction.

High Level Idea

Syntax guides composition, types determine their semantics, predicate
logic does the rest.
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Formal Semantics

Syntactic Analysis Semantic Interpretation

S ⇒ NP VP [[VP]]([[NP]])
NP ⇒ cats, milk, etc. [[cats]], [[milk]], . . .
VP ⇒ Vt NP [[Vt]]([[NP]])
Vt ⇒ like, hug, etc. λyx .[[like]](x , y), . . .

[[like]]([[cats]], [[milk]])

[[cats]] λx .[[like]](x , [[milk]])

λyx .[[like]](x , y) [[milk]]

Cats like milk.
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Formal Semantics

Pros:

Intuitive and interpretable(?) representations.

Leverage the power of predicate logic to model semantics.

Evaluate the truth of statements, derive conclusions, etc.

Cons:

Brittle, requires robust parsers.

Extensive logical model required for evaluation of clauses.

Extensive set of rules required to do anything useful.

Overall, an intractable (or unappealing) learning problem.
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Simple Parametric Models

Basic models with pre-defined function form (Mitchell et al., 2008):

General form : p = f (u, v ,R,K )

Add : p = u + v

WeightAdd : p = αTu + βTv
Multiplicative : p = u ⊗ v

Combined : p = αTu + βTv + γT (u ⊗ v)

We will see later in this tutorial that the above models could be seen as
special cases of more complicated composition models.
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Results

Reference (R): The color ran.
High-similarity landmark (H): The color dissolved.
Low-similarity landmark (L): The color galloped.

A good composition model should give the above R-H pair a similarity score
higher than that given to the R-L pair. Also, a good model should assign such
similarity scores with a high correlation (ρ) to what human assigned.

Models R-H similarity R-L similarity ρ
NonComp 0.27 0.26 0.08**
Add 0.59 0.59 0.04*
WeightAdd 0.35 0.34 0.09**
Kintsch 0.47 0.45 0.09**
Multiply 0.42 0.28 0.17**
Combined 0.38 0.28 0.19**
UpperBound 4.94 3.25 0.40**

Table: Mean cosine similarities for the R-H pairs and R-L pairs as well as the
correlation coefficients (ρ) with human judgments (*: p < 0.05, **: p < 0.01).
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Parameterizing Composition Functions

To move beyond simple algebraic or parametric models we need function
approximators which, ideally:

Can approximate any arbitrary function (e.g. ANNs).

Can cope with variable size sequences.

Can capture long range or unbounded dependencies.

Can implicitly or explicitly model structure.

Can be trained against a supervised or unsupervised objective (or
both — semi-supervised training).

Can be trained chiefly or primarily through backpropagation.

A Neural Network Model Zoo

This section presents a selection of models satisfying some (if not all) of
these criteria.
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Recurrent Neural Networks

Bounded Methods

Many methods impose explicit or implicit length limits on conditioning
information. For example:

order-n Markov assumption in NLM/LBL

fully-connected layers and dynamic pooling in conv-nets

wj f(w1:j)

hj-1 hj
Recurrent Neural Networks introduce a repeatedly
composable unit, the recurrent cell, which both
models an unbounded sequence prefix and express a
function over it.
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The Mathematics of Recurrence

wj f(w1:j)

hj-1 hj

previous
state

next
state

inputs outputs

Building Blocks

An input vector wj ∈ R|w |

A previous state hj−1 ∈ R|h|

A next state hj ∈ R|h|

An output yj ∈ R|y |

fy : R|w | × R|h| → R|y |

fh : R|w | × R|h| → R|h|

Putting it together

hj = fh(wj , hj−1)

yj = fy (wj , hj)

So yj = fy (wj , fh(wj−1, hj−1)) = fy (wj , fh(wj−1, fh(wj−2, hj−2))) = . . .
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RNNs for Language Modelling

Language modelling

We want to model the joint probability of tokens t1, . . . tn in a sequence:

P(t1, . . . tn) = P(t1)
n∏

i=2

P(ti |t1, . . . ti−1)

Adapting a recurrence for basic LM

For vocab V, define an embedding matrix E ∈ R|V |×|w | and a logit
projection matrix WV ∈ R|y |×|V |. Then:

wj = embed(tj ,E )

yj = fy (wj , hj) hj = fh(wj , hj−1)

pj = softmax(yjWV )

P(tj+1|t1, . . . , tj) = Categorical(tj+1; pj)
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Aside: The Vanishing Gradient Problem and LSTM RNNs

RNN is deep “by time”, so it could
seriously suffer from the vanishing
gradient issue.

LSTM configures memory cells and
multiple “gates” to control
information flow. If properly learned,
LSTM can keep pretty long-distance
(hundreds of time steps) information
in memory.

Memory-cell details:

it = σ(Wxixt + Whiht−1 + Wcict−1)

ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1)

ct = σ(ftct−1 + ittanh(Wxcxt + Whcht−1))

ot = σ(Wxoxt + Whoht−1 + Wcoct)

ht = σ(ottanh(ct))
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Conditional Language Models

Conditional Language Modelling

A strength of RNNs is that hj can model not only the history of the
generated/observed sequence t1, . . . , tj , but any conditioning information
β, e.g. by setting h0 = β.

w1 w2 w3

�

w1 w2 w3

�
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Encoder-Decoder Models with RNNs

Les chiens aiment les os ||| Dogs love bones

Dogs love bones </s>

Source sequence Target sequence

cf. Kalchbrenner et al., 2013; Sutskever et al., 2014

Model p(t1, . . . , tn|s1, . . . , sm)

hei = RNNencoder (si , h
e
i−1)

hdi = RNNdecoder (ti , h
d
i−1)

hd0 = hem

ti+1 ∼ Categorical(t; fV (hi ))

The encoder RNN as a composition module

All information needed to transduce the source into the target sequence
using RNNdecoder needs to be present in the start state hd0 .
This start state is produced by RNNencoder , which will learn to compose.
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RNNs as Sentence Encoders

This idea of RNNs as sentence encoder works for classification as well:

Data is labelled sequences (s1, . . . , s|s|; ŷ).

RNN is run over s to produce final state h|s| = RNN(s).

A differentiable function of h|s| classifies: y = fθ(h|s|)

h|s| can be taken to be the composed meaning of s, with regard to
the task at hand.

An aside: Bi-directional RNN encoders

For both sequence classification and generation, sometimes a
Bi-directional RNN is used to encode:

h←i = RNN←(si , h
←
i+1) h→i = RNN→(si , h

→
i−1)

h|s| = concat(h←1 , h
→
|s|)
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A Transduction Bottleneck

Les chiens aiment les os ||| Dogs love bones

Dogs love bones </s>

Source sequence Target sequence

Single vector representation of
sentences causes problems:

Training focusses on learning
marginal language model of
target language first.

Longer input sequences cause
compressive loss.

Encoder gets significantly
diminished gradient.

In the words of Ray Mooney. . .

“You can’t cram the meaning of a whole %&!$ing sentence into a single
$&!*ing vector!” Yes, the censored-out swearing is copied verbatim.
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Attention

Les chiens aiment les os ||| Dogs love bones

Dogs love bones </s>

Source sequence Target sequence

cf. Bahdanau et al., 2014

We want to use he1, . . . , h
e
m when

predicting ti by conditioning on
words that might relate to ti :

1 Compute hdi (RNN update)

2 eij = fatt(h
d
i , h

e
j )

3 aij = softmax(ei )j
4 hatti =

∑m
j=1 aijh

e
j

5 ĥi = concat(hdi , h
att
i )

6 ti+1 ∼ Categorical(t; fV (ĥi ))

The many faces of attention

Many variants on the above process: early attention (based on hdi−1 and ti ,

used to update hdi ), different attentive functions fatt (e.g. based on
projected inner products, or MLPs), and so on.
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Attention and Composition

We refer to the set of source activation vectors he1, . . . , h
e
m in the previous

slides as an attention matrix. Is it a suitable sentence representation?

Pros:

Locally compositional: vectors contain information about other words
(especially with bi-directional RNN as encoder).

Variable size sentence representation: longer sentences yield larger
representation with more capacity.

Cons:

Single vector representation of sentences is convenient (many
decoders, classifiers, etc. expect fixed-width feature vectors as input)

Locally compositional, but are long range dependencies resolved in
the attention matrix? Does it truly express the sentence’s meaning as
a semantic unit (or is it just good for sequence transduction)?
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Recursive Neural Networks

Recursive networks: a generalization of (chain) recurrent networks with
a computational graph, often a tree (Pollack, 1990; Francesconi et al.,
1997; Socher et al., 2011a,b,c, 2013; Zhu et al., 2015b)
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Recursive Neural Networks

Successfully applied to consider input data structures.

Natural language processing (Socher et al., 2011a,c; Le et al., 2015;
Tai et al., 2015; Zhu et al., 2015b)
Computer vision (Socher et al., 2011b)

How to determine the structures.

Encode given “external” knowledge about the structure of the input
data,

e.g., syntactic structures; modelling sentential semantics and syntax is
one of the most interesting problems in language.

Encode simply a complete tree.
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Integrating Syntactic Parses in Composition

Recursive Neural Tensor Network (Socher et al., 2012):

The structure is given (here by a constituency parser.)
Each node here is implemented as a regular feed-forward layer plus a
3rd -order tensor.

The tensor captures 2nd -degree (quadratic) polynomial interaction of
children, e.g., b2i , bicj , and c2j .
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Results

The models have been successfully applied to a number of tasks such as
sentiment analysis (Socher et al., 2013).

Table: Accuracy for fine grained (5-class) and binary predictions at the
sentence level (root) and for all nodes.
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Tree-LSTM

Tree-structured LSTM (Le, *SEM-15; Tai, ACL-15; Zhu, ICML-15): It is
an extension of chain LSTM to tree structures.

If your have a non-binary tree, a
simple solution is to binarize it.
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Tree-LSTM Application: Sentiment Analysis

Sentiment composed over a constituency parse tree:
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Tree-LSTM Application: Sentiment Analysis

Results on Stanford Sentiment Treebank (Zhu et al., 2015b):

Models roots phrases
NB 41.0 67.2
SVM 40.7 64.3
RvNN 43.2 79.0
RNTN 45.7 80.7
Tree-LSTM 48.9 81.9

Table: Performances (accuracy) of models on Stanford Sentiment Treebank, at
the sentence level (roots) and the phrase level.
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Tree-LSTM Application: Natural Language Inference

Applied to Natural Language Inference (NLI): Determine if a sentence
entails another, if they contradict, or have no relation (Chen et al., 2017).
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Tree-LSTM Application: Natural Language Inference

Accuracy on Stanford Natural Language Inference (SNLI) dataset:
(Chen et al., 2017)

* Welcome to the poster at 6:00-9:30pm on July 31.
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Learning Representation for Natural Language Inference

RepEval-2017 Shared Task (Williams et al., 2017): Learn sentence
representation as a fixed-length vector.
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Tree-LSTM without Syntactic Parses

How if we simply apply recursive networks over trees that are not
generated from syntactic parses, e.g., a complete binary trees?

Multiple efforts on SNLI (Munkhdalai
et al., 2016; Chen et al., 2017) have
observed that the models outperform
sequential (chain) LSTM.

This could be related to the discussion
that recursive nets may capture
long-distance dependency (Goodfellow
et al., 2016).
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SPINN: Doing Away with Test-Time Trees

buffer

stack

t = 0

down
sat
cat
the

shift

t = 1

down
sat
cat

the

shift

t = 2

down
sat

cat
the

reduce

t = 3

down
sat

the cat

shift

t = 4

down

sat
the cat

shift

t = 5

down
sat

the cat

reduce

t = 6

sat down
the cat

reduce

t = 7 = T

(the cat) (sat down)

output to model
for semantic task

Image credit: Sam Bowman and co-authors.
cf. Bowman et al., 2016

Shift-Reduce Parsers:

Exploit isomorphism between binary branching trees with T leaves
and sequences of 2T − 1 binary shift/reduce actions.

Shift unattached leaves from a buffer onto a processing stack.

Reduce the top two child nodes on the stack to a single parent node.

SPINN: Jointly train a TreeRNN and a vector-based shift-reduce parser.

Training time trees offer supervision for shift-reduce parser.
No need for test time trees!
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SPINN:Doing Away with Test-Time Trees

buffer down
sat

stack

cat
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composition

tracking
transition

reduce

down
sat

the cat composition

tracking
transition

shift

down

sat
the cat

tracking

Image credit: Sam Bowman and co-authors.

Word vectors start on buffer b (top: first word in sentence).

Shift moves word vectors from buffer to stack s.

Reduce pops top two vectors off the stack, applies
f R : Rd × Rd → Rd , and pushes the result back to the stack
(i.e. TreeRNN composition).

Tracker LSTM tracks parser/composer state across operations,
decides shift-reduce operations a, is supervised by both observed
shift-reduce operations and end-task:

ht = LSTM(f C (bt−1[0], st−1[0], st−1[1]), ht−1) at ∼ f A(ht)
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A Quick Introduction to Reinforce

What if some part of our process is not differentiable (e.g. samples from
the shift-reduce module in SPINN) but we want to learn with no labels. . .

x y

x y

z

p(y |x) = Epθ(z|x) [fφ(z , x)] s.t. y ∼ fφ(z , x) or y = fφ(z , x)

∇φp(y |x) =
∑
z

pθ(z |x)∇φfφ(z , x) = Epθ(z|x) [∇φfφ(z , x)]

∇θp(y |x) =
∑
z

fφ(z , x)∇θpθ(z |x) = ???
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A Quick Introduction to Reinforce

The Reinforce Trick (R. J. Williams, 1992)

∇θ log pθ(z |x) =
∇θpθ(z |x)

pθ(z |x)
⇒ ∇θpθ(z |x) = pθ(z |x)∇θ log pθ(z |x)

∇θp(y |x) =
∑
z

fφ(z , x)∇θpθ(z |x)

=
∑
z

fφ(z , x)pθ(z |x)∇θ log pθ(z |x)

= Epθ(z|x) [fφ(z , x)∇θ log pθ(z |x)]

This naturally extends to cases where p(z |x) = p(z1, . . . , zn|x).

RL vocab: samples of such sequences of of discrete actions are referred to
as “traces”. We often refer to pθ(z |x) as a policy πθ(z ; x).
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SPINN+RL: Doing Away with Training-Time Trees

“Drop in” extension to SPINN (Yogatama et al., 2016):

Treat at ∼ f A(ht) as policy πAθ (at ; ht), trained via Reinforce.

Reward is negated loss of the end task, e.g. log-likelihood of the
correct label.

Everything else is trained by backpropagation against the end task:
tracker LSTM, representations, etc. receive gradient both from the
supervised objective, and from Reinforce via the shift-reduce policy.

a wo
man

wea
ring

sun
glas
ses

is frow
ning . a boy drag

s his sled
s

thro
ugh the sno

w .

Model recovers linguistic-like structures (e.g. noun phrases, auxiliary verb-verb pairing, etc.).
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SPINN+RL: Doing Away with Training-Time Trees

Does RL-SPINN work? According to Yogatama et al. (2016):

Better than LSTM baselines: model captures and exploits structure.

Better than SPINN benchmarks: model is not biased by what
linguists think trees should be like, only has a loose inductive biase
towards tree structures.

But some parses do not reflect order of composition (see below).
Semi-supervised setup may be sensible.

two men are playi
ng

frisb
ee in the park .fami

ly
me
mbe
rs

stan
ding

outs
ide a hom

e .

Some “bad” parses, but not necessarily worse results.
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Convolution Neural Networks

Visual Inspiration: How do we learn to recognise pictures?
Will a fully connected neural network do the trick?8
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ConvNets for pictures

Problem: lots of variance that shouldn’t matter (position, rotation, skew,
difference in font/handwriting).8 88
8 8 8
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ConvNets for pictures

Solution: Accept that features are local. Search for local features with a
window. 8
Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 60 / 119



ConvNets for pictures

Convolutional window acts as a classifer for local features.8 ⇒
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ConvNets for pictures

Different convolutional maps can be trained to recognise different features
(e.g. edges, curves, serifs).

...
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ConvNets for pictures

Stacked convolutional layers learn higher-level features.

Fully Connected Layer
Convolutional Layer

8 8
Raw Image First Order Local Features Higher Order Features Prediction

One or more fully-connected layers learn classification function over
highest level of representation.
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ConvNets for language

Convolutional neural networks fit natural language well.

Deep ConvNets capture:

Positional invariances

Local features

Hierarchical structure

Language has:

Some positional invariance

Local features (e.g. POS)

Hierarchical structure (phrases,
dependencies)
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ConvNets for language

How do we go from images to sentences? Sentence matrices!

w1 w2 w3 w4 w5
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ConvNets for language

Does a convolutional window make sense for language?

w1 w2 w3 w4 w5
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ConvNets for language

A better solution: feature-specific windows.

w1 w2 w3 w4 w5
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Word Level Sentence Vectors with ConvNets

K-Max pooling
(k=3)

 Fully connected
layer

Folding

Wide
convolution

(m=2)

Dynamic
k-max pooling
 (k= f(s) =5)

 Projected
sentence 

matrix
(s=7)

Wide
convolution

(m=3)

game's the same, just got more fierce
cf. Kalchbrenner et al., 2014
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Character Level Sentence Vectors with ConvNets

Image credit: Yoon Kim and co-authors.

cf. Kim et al., 2016

Naively, we could just represent
everything at character level.

Convolutions seem to work well
for low-level patterns
(e.g. morphology)

One interpretation: multiple
filters can capture the low-level
idiosyncrasies of natural
language (e.g. arbitrary spelling)
whereas language is more
compositional at a higher level.
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ConvNet-like Architectures for Composition

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t11 t12 t13 t14 t15 t16t10

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

t11 t12 t13 t14 t15 t16 t17t10t9t8t7t6t5t4t3t2t1

Image credit: Nal Kalchbrenner and co-authors.

cf. Kalchbrenner et al., 2016

Many other CNN-like
architectures (e.g. ByteNet from
Kalchbrenner et al. (2016))

Common recipe components:
dilated convolutions and ResNet
blocks.

These model sequences well in
domains like speech, and are
beginning to find applications in
NLP, so worth reading up on.
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Unsupervised Composition Models

Why care about unsupervised learning?

Much more unlabelled linguistic data than labelled data.

Learn general purpose representations and composition functions.

Suitable pre-training for supervised models, semi-supervised, or
multi-task objectives.

In the (paraphrased) words of Yann LeCun: unsupervised learning is a
cake, supervised learning is frosting, and RL is the cherry on top!
Plot twist: it’s possibly a cherry cake.

Yes, that’s nice. . . But what are we doing, concretely?

Good question! Usually, just modelling—directly or indirectly—some
aspect of the probability of the observed data.

Further suggestions on a postcard, please!
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Autoencoders

Autoencoders provide an unsupervised method for representation learning:

We minimise an objective function over inputs xi , i ∈ N and their
reconstructions x ′i :

J =
1

2

N∑
i

∥∥x ′i − xi
∥∥2

Warning: degenerate solution if xi can be updated (∀i .xi = 0).
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Recursive Autoencoders

cf. Socher et al., 2011a

To auto-encode variable length
sequences, we can chain
autoencoders to create a recursive
structure.

Objective Function
Minimizing the reconstruction error
will learn a compression function over
the inputs:

Erec(i , θ) =
1

2

∥∥∥xi − x ′i

∥∥∥2

A “modern” alternative: use sequence to sequence model, and
log-likelihood objective.
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What’s wrong with auto-encoders?

Empirically, narrow auto-encoders produce sharp latent codes, and
unregularised wide auto-encoders learn identity functions.

Reconstruction objective includes nothing about distance preservation
in latent space: no guarantee that

dist(a, b) ≤ dist(a, c)

→ dist(encode(a), encode(b)) ≤ dist(encode(a), encode(c))

Conversely, little incentive for similar latent codes to generate
radically different (but semantically equivalent) observations.

Ultimately, compression 6= meaning.
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Skip-Thought

Image credit: Jamie Kiros and co-authors.
cf. Kiros et al., 2015

Similar to auto-encoding objective: encode sentence, but decode
neighbouring sentences.

Pair of LSTM-based seq2seq models with share encoder, but
alternative formulations are possible.

Conceptually similar to distributional semantics: a unit’s
representation is a function of its neighbouring units, except units are
sentence instead of words.
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Variational Auto-Encoders

Semantically Weak Codes

Generally, auto-encoders sparsely encode or densely compress information.
No pressure to ensure similarity continuum amongst codes.

Factorized Generative Picture

p(x) =

∫
p(x , z)dz

=

∫
p(x |z)p(z)dz

= Ep(z) [p(x |z)]

z xN(0, I)

Prior on z enforces semantic continuum (e.g. no arbitrarily unrelated codes
for similar data), but expectation is typically intractable to compute
exactly, and Monte Carlo estimate of gradients will be high variance.
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Variational Auto-Encoders

Goal

Estimate, by maximising p(x):

The parameters θ of a function modelling part of the generative
process pθ(x |z) given samples from a fixed prior z ∼ p(z).

The parameters φ of a distribution qφ(z |x) approximating the true
posterior p(z |x).

How do we do it? We maximise p(x) via a variational lower bound (VLB):

log p(x) ≥ Eqφ(z|x) [log pθ(x |z)]− DKL (qφ(z |x)‖p(z))

Equivalently we can minimise NLL(x):

NLL(x) ≤ Eqφ(z|x)[NLLθ(x |z)] + DKL (qφ(z |x)‖p(z))
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Variational Auto-Encoders

Let’s derive the VLB:

log p(x) = log

∫
1 · pθ(x |z)p(z)dz

= log

∫
qφ(z |x)

qφ(z |x)
pθ(x |z)p(z)dz

= logEqφ(z|x)

[
p(z)

qφ(z |x)
pθ(x |z)

]
≥ Eqφ(z|x)

[
log

p(z)

qφ(z |x)
+ log pθ(x |z)

]
= Eqφ(z|x) [log pθ(x |z)]− DKL (qφ(z |x)‖p(z))

For right qφ(z |x) and p(z) (e.g. Gaussians) there is a closed-form
expression of DKL (qφ(z |x)‖p(z)).
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Variational Auto-Encoders

The problem of stochastic gradients

Estimating ∂
∂φEqφ(z|x) [log pθ(x |z)] requires backpropagating through

samples z ∼ qφ(z |x). For some choices of q, such as Gaussians there are
reparameterization tricks (cf. Kingma et al., 2013)

Reparameterizing Gaussians (Kingma et al., 2013)

z ∼ N(z ;µ, σ2)

equivalent to z = µ+ σε

where ε ∼ N(ε; 0, I)

Trivially:
∂z

∂µ
= 1

∂z

∂σ
= ε
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Variational Auto-Encoders for Sentences

1 Observe a sentence w1, . . . ,wn. Encode it, e.g. with an LSTM:
he = LSTMe(w1, . . . ,wn)

2 Predict µ = f µ(he) and σ2 = f σ(he) (in practice we operate in log
space for σ2 by determining log σ).

3 Sample z ∼ q(z |x) = N(z ;µ, σ2)

4 Use conditional RNN to decode and measure log p(x |z). Use
closed-form formula of KL divergence of two Gaussians to calculate
−DKL (qφ(z |x)‖p(z)). Add both to obtain maximisation objective.

5 Backpropagate gradient through decoder normally based on log
component of the objective, and use reparameterisation trick to
backpropagate through sampling operation back to encoder.

6 Gradient of the KL divergence component of the loss with regard to
the encoder parameters is straightforward backpropagation.
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Variational Auto-Encoders and Autoregressivity

The problem of powerful auto-regressive decoders

We want to minimise NLL(x) ≤ Eq(z|x)[NLL(x |z)] + DKL (q(z |x)‖p(z)).
What if the decoder is powerful enough to model x without using z?

A degenerate solution:

If z can be ignored when minimising the reconstruction loss of x given
z , the model can safely let q(z |x) collapse to the prior p(z) to
minimise DKL (q(z |x)‖p(z)).
Since q need not depend on x (e.g. the encoder can just ignore x and
predict the mean and variance of the prior), z bears no relation to x .
Result: useless encoder, useless latent variable.

Is this really a problem?

If your decoder is not auto-regressive (e.g. MLPs expressing the probability
of pixels which are conditionally independent given z), then no.
If your decoder is an RNN and domain has systematic patterns, then yes.
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Variational Auto-Encoders and Autoregressivity

What are some solutions to this problem?

Pick a non-autoregressive decoder. If you care more about the latent
code than having a good generative model (e.g. document modelling),
this isn’t a bad idea, but frustrating if this is the only solution.

KL Annealing: set Eq(z|x)[NLL(x |z)] + αDKL (q(z |x)‖p(z)) as
objective. Start with α = 0 (basic seq2seq model). Increase α to 1
over time during training. Works somewhat, but unprincipled
changing of the objective function.

Set as objective Eq(z|x)[NLL(x |z)] + max(λ,DKL (q(z |x)‖p(z))) where
λ ≥ 0 is a scalar or vector hyperparameter. Once the KL dips below λ,
there is no benefit, so the model must rely on z to some extent. This
objective is still a valid upper bound on NLL(x) (albeit a looser one).
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Compositional or Non-compositional Representation
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Compositional or Non-compositional Representation

Such “hard” or “soft” non-compositionalilty exists at different
granularities of texts.

We will discuss some models on how to handle this at the
word-phrase level.
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Compositional and Non-compositional Semantics

Compositionality/non-compositionality is a common phenomenon in
language.

A framework that is able to consider both
compositionality/non-compositionality is of interest.

A pragmatic viewpoint: If one is able to obtain holistically the
representation of an n-gram or a phrase in text, it would be desirable
that a composition model has the ability to decide the sources of
knowledge it will use.

In addition to composition, considering non-compositionality may
avoid back-propagating errors unnecessarily to confuse word
embedding.

think about the “kick the bucket” example.
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avoid back-propagating errors unnecessarily to confuse word
embedding.

think about the “kick the bucket” example.
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Integrating Compositional and Non-compositional
Semantics

Integrating non-compositionality in recursive networks (Zhu et al., 2015a):

Basic idea: Enabling individual composition operations to be able to
choose information from different resources, compositional or
non-compositional (e.g., holistically learned).
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Integrating Compositional and Non-compositional
Semantics

Model 1: Regular bilinear merge (Zhu et al., 2015a):
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Integrating Compositional and Non-compositional
Semantics

Model 2: Tensor-based merging (Zhu et al., 2015a)
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Integrating Compositional and Non-compositional
Semantics

Model 3: Explicitly gated merging (Zhu et al., 2015a):
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Experiment Set-Up

Task: sentiment analysis
Data: Stanford Sentiment Treebank
Non-compositional sentiment

Sentiment of ngrams automatically learned from tweets (Mohammad
et al., 2013).

Polled the Twitter API every four hours from April to December 2012
in search of tweets with either a positive word hashtag or a negative
word hashtag.
Using 78 seed hashtags (32 positive and 36 negative) such as #good,
#excellent, and #terrible to annotate sentiment.
775,000 tweets that contain at least a positive hashtag or a negative
hashtag were used as the learning corpus.
Point-wise mutual information (PMI) is calculated for each bigrams
and trigrams.
Each sentiment score is converted to a one-hot vector; e.g. a bigram
with a score of -1.5 will be assigned a 5-dimensional vector [0, 1, 0, 0,
0] (i.e., the e vector).

Using the human annotation coming with Stanford Sentiment
Treebank for bigrams and trigrams.
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Results

Models sentence-level (roots) all phrases (all nodes)

(1) RNTN 42.44 79.95

(2) Regular-bilinear (auto) 42.37 79.97
(3) Regular-bilinear (manu) 42.98 80.14

(4) Explicitly-gated (auto) 42.58 80.06
(5) Explicitly-gated (manu) 43.21 80.21

(6) Confined-tensor (auto) 42.99 80.49
(7) Confined-tensor (manu) 43.75† 80.66†

Table: Model performances (accuracy) on predicting 5-category sentiment at the
sentence (root) level and phrase level.

1The results is based on the version 3.3.0 of the Stanford CoreNLP.
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Integrating Compositional and Non-compositional
Semantics

We have discussed integrating non-compositionality in recursive
networks.

How if there are no prior input structures available?

Remember we have discussed the models that capture hidden
structures.

How if a syntactic parsing tree is not very reliable?

e.g., for data like social media text or speech transcripts.

In these situations, how can we still consider non-compositionality in
the composition process.
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Integrating Compositional and Non-compositional
Semantics

Integrating non-compositionality in chain recurrent networks (Zhu et al.,
2016)
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Integrating Compositional and Non-compositional
Semantics

Non-compositional nodes:

Form the non-compositional paths (e.g., 3-8-9 or 4-5-9).

Allow the embedding spaces of a non-compositional node to be
different from those of a compositional node.
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Integrating Compositional and Non-compositional
Semantics

Fork nodes:

Summarizing history so far to
support both compositional and
non-compositional paths.
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Integrating Compositional and Non-compositional
Semantics

Merging nodes:

Combining information from compositional and non-compositional paths.

Binarization

Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 100 / 119



Integrating Compositional and Non-compositional
Semantics

Binarization:

Binarizing the composition of in-bound
paths (we do not worry too much about
the order of merging.)

Now we do not need to design different
nodes for different fan-in, but let
parameter-sharing be all over the nets.

Use the tree-LSTM above.
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Results

Method SemEval-13 SemEval-14
Majority baseline 29.19 34.46
Unigram (SVM) 56.95 58.58
3rd best model 64.86 69.95
2nd best model 65.27 70.14
The best model 69.02 70.96
DAG-LSTM 70.88 71.97

Table: Performances of different models in official evaluation metric (macro
F-scores) on the test sets of SemEval-2013 and SemEval-2014 Sentiment Analysis
in Twitter in predicting the sentiment of the tweet messages.
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Results

Method SemEval-13 SemEval-14
DAG-LSTM

Full paths 70.88 71.97
Full – {autoPaths} 69.36 69.27

Full – {triPaths} 70.16 70.77
Full – {triPaths, biPaths} 69.55 69.93

Full – {manuPaths} 69.88 70.58
LSTM without DAG

Full – {autoPaths,manuPaths} 64.00 66.40

Table: Ablation performances (macro-averaged F-scores) of DAG-LSTM with
different types of paths being removed.

Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 103 / 119



Outline

1 Introduction
Semantic composition
Formal methods
Simple parametric models

2 Parameterizing Composition Functions
Recurrent composition models
Recursive composition models
Convolutional composition models
Unsupervised models

3 Selected Topics
Compositionality and non-compositionality
Subword composition methods

4 Summary
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Subword Composition

Composition can also be performed to learn representations for words
from subword components (Botha et al., 2014; Ling et al., 2015;
Luong et al., 2015; Kim et al., 2016; Sennrich et al., 2016).

Rich morphology: some languages have larger vocabularies than others.
Informal text: very coooooool!

Basically alleviate Sparseness!

One perspective of viewing subword models:

Morpheme based composition: deriving word representation from
morphemes.
Character based composition: deriving word representation from
characters (pretty effective as well, even used by itself!)

Another perspective (by model architectures):

Recursive models
Convolutional models
Recurrent models

We will discuss several typical methods here only briefly.
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Subword Composition: Recursive Networks

Morphological Recursive Neural Networks (Luong et al., 2013):
Extending recursive neural networks (Socher et al., 2011b) to learn word
representation through composition over morphemes.

Assume the availability of morphemic analyses.

Each tree node combines a stem vector and an affix vector.

Figure. Context insensitive (left) and sensitive (right) Morphological
Recursive Neural Networks.
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Subword Composition: Recurrent Networks

Bi-directional LSTM for subword composition (Ling et al., 2015).

Figure. Character RNN for sub-word composition.
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Subword Composition: Convolutional Networks

Convolutional neural networks for subword composition (Zhang et al.,
2015)

Figure. Character CNN for sub-word composition.

In general, subword models have been successfully used in a wide
variety of problems such as translation, sentiment analysis, question
answering, etc.

You should seriously consider it in the situations such as OOV is high
or the word distribution has a long tail.

Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 108 / 119



Subword Composition: Convolutional Networks

Convolutional neural networks for subword composition (Zhang et al.,
2015)

Figure. Character CNN for sub-word composition.

In general, subword models have been successfully used in a wide
variety of problems such as translation, sentiment analysis, question
answering, etc.

You should seriously consider it in the situations such as OOV is high
or the word distribution has a long tail.

Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 108 / 119



Outline

1 Introduction
Semantic composition
Formal methods
Simple parametric models

2 Parameterizing Composition Functions
Recurrent composition models
Recursive composition models
Convolutional composition models
Unsupervised models

3 Selected Topics
Compositionality and non-compositionality
Subword composition methods

4 Summary

Xiaodan Zhu & Edward Grefenstette DL for Composition July 30th, 2017 109 / 119



Summary

The tutorial discusses semantic composition with distributed
representation learned with neural networks.

Neural networks are able to learn powerful representation and
complicated composition functions.

The models can achieve state-of-the-art performances on a wide
range of NLP tasks.

We expect further studies would continue to deepen our
understanding on such approaches:

Unsupervised models
Compositionality with other “ingredients” of intelligence
Compositionality in multi-modalities
Interpretability of models
Distributed vs./and symbolic composition models
... ...
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